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ABSTRACT

In this report a new Cramer-Rao (CR) type lower bound is derived which takes
into account a user-specified constraint on the length of the gradient of estimator bias
with respect to the set of underlying parameters. If the parameter space is bounded,
the constraint on bias gradient translates into a constraint on the magnitude of the
bias itself: the bound reduces to the standard unbiased form of the CR bound for
unbiased estimation. In addition to its usefulness as a lower bound that is insensitive
to small biases in the estimator, the rate of change of the new bound provides
a quantitative bias “sensitivity index” for the general bias-dependent CR bound.
An analytical form for this sensitivity index is derived which indicates that small
estimator biases can make the new bound significantly less than the unbiased CR
bound when important but difficult-to-estimate nuisance parameters exist. This
implies that the application of the CR bound is unreliable for this situation due
to severe bias sensitivity. As a practical illustration of these results, the problem
of estimating elements of the 2 x 2 covariance matrix associated with a pair of
independent identically distributed (IID) zero-mean Gaussian random sequences is
presented.

~ Accession For i |
CNTIS  GRAI

CDTIC T

P R

[ IR I

0

]
PRES——"
© e e o oo

8
s

;
|
!
; >

iy Dtat | ¢

a

e e — —




ACKNOWLEDGMENTS

1 would like to thank Larry Horowitz and John Jayne for their numerous
insightful comments and suggestions offered during the preparation of this report.




TABLE OF CONTENTS

Abstract
Acknowledgments
List of Dlustrations

INTRODUCTION

PRELIMINARIES

2.1 Notation
2.2 Identities

ESSENTIALLY UNBIASED ESTIMATORS

INTERPRETATIONS OF THE CR BOUND

4.1 CR Bounds and Unbiased Estimation of the Mean
4.2 CR Bounds and Sensitivity of the Ambiguity Function

A NEW CR BOUND FOR ESSENTIALLY UNBIASED ESTIMATORS

A BIAS-SENSITIVITY INDEX AND A SMALL-é§ APPROXIMATION

DISCUSSION

7.1 Achievability of New Bound
7.2 Properties of the New Bound
7.3 Practical Implementation of the Bound

APPLICATIONS

8.1 Estimation of Standard Deviation
8.2 Estimation of Correlation Coeflicient
8.3 Numerical Evaluations

CONCLUSION

vii

i

11

13
14

23

31

41
41

47

49

49
51
51




APPENDIX

A.1 Fisher Information Matrix for Estimation of 2 x 2 Covariance Matrix
A.2 Bound Derivations for Estimation of 2 x 2 Covariance Matrix

REFERENCES

TABLE OF CONTENTS

(Continued)

viti

57

57
59




LIST OF ILLUSTRATIONS

Figure
No. Page
1 A spherical volume element in the transformed coordinates. 17
2 The induced ellipsoidal volume element in the standard coordinates. 18
3 The constant contours of a hypothetical ambiguity function and the super-
imposed differential volume elements. 19
4 A plot of the constant contours of the Q-form (CR bound) and the domain
of the bias-gradient constraint. 25
5 The normalized difference between the new bound and the unbiased CR bound. 52
6 The bias-sensitivity index plotted over the same range of parameters as in
Figure 5. 53




1. INTRODUCTION

This report deals with the problem of bounding the variance of parameter estimators under the
constraint of small bias. In multiple parameter estimation problems, the variance of the estimates
of a single parameter can appear to violate the unbiased Cramer-Rao (CR) lower bound due to
the presence of extremely small biases; that is, the actual variance of the estimator is lower than
that predicted by the CR bound (for a particularly simple example of bound violation see Stoica
and Moses [1]). This indicates that the unbiased CR bound may be an unreliable predictor of
performance even when biases are otherwise insignificant. On the other hand, the application of
the general CR bound for biased estimators depends on knowledge of the particular bias of the
estimator; in particular, it is necessary to know the gradient of the bias with respect to the vector
of unknown parameters. However, the precise evaluation of estimator bias is frequently difficult
and not of direct interest when bias is small. Furthermore, for performance comparisons. a useful
lower bound should apply to the entire class of estimators with acceptably small bias.

In this report a new CR-type lower bound is derived which takes into account a user-specified
constraint on the length of the gradient of estimator bias with respect to the vector of unknown
parameters. Alternatively, the bound takes into account a constraint on the actual estimator bias
as the unknown parameters range over a specified ellipsoid. This bound is uniform with respect to
a special class of biased estimators: those whose bias gradient has a length of less than or equal to
¢ < 1. In addition to its usefulness as a bias-insensitive lower bound, the slope of the new bound
as a function of § provides a characterization of the bias semsitivity of the general CR bound on
estimator variance. For a given estimation problem, an overly large magnitude of bias sensitivity
provides a warning against use of the unbiased CR bound. If an upper bound on the bias gradient
ot the estimator 1s specified, our lower bound on estimator variance can subsequently be applied.

The specific results developed herein follow.

1. A geometric point of view provides some insight into the behavior of the general CR
bound;

2. A functional minimization is performed to arrive at the new bound based on the
Fisher information matrix;

3. Results of an asymptotic analysis of the new bound as bias — 0 indicate important
factors controlling bias sensitivity of general CR bounds;

4. The asymptotic analysis suggests « “bias-sensitivity index,” which is the slope of the
new bound as a function of the length 6 of the bias gradient. This index indicates
the impact of difficult-to-estimate “nuisance” parameters on the magnitude of the
general CR bound;

5. The form of the new bound is suggestive of “superefficient,” essentially unbiased
estimator structures which could outperform absolutely unbiased estimators in the
sense of mean-squared-error;




6. Sensitivity results are obtained for estimation of the elements of the 2 ¥ 2 covariance
matrix associated with a pair of independent identically distributed (IID) zero-mean
Gaussian random sequences.

The report is organized as follows. Section 2.1 gives the notation. Section 2.2 is a summary
of useful vector and matrix relations. Section 3 defines the ciass of essentiaily unbiased estimators.
Section { is a geometric interpretation of the CR bound in terms of its bias dependency. The new
bound is derived in Section 5. In Section 6 the slope of the bound is derived and an asyvmptotic
approximation to the new bound is given. Section 7 is a discussion of the results and an interpre-
tation of the new bound in terms of the joint “estimabilitv” of the multiple parameters. Finally.
Section 8 applies the new bound to covariance estimation for a pair of ID Gaussian sequences.




2. PRELIMINARIES

2.1 Notation

General notational conventions are as follows. If {(y.z) : = = g(y)} is the graph of a function.
then g denotes the function and g(y) denotes a functional evaluation at the point y. An exception
to this convention occurs when ¢ is used to denote g(y) for compactness of notation. In general, an
uppercase letter near the end of the alphabet, e.g.. X. denotes a random variable, random vector, or
random process and the corresponding lowercase, e.g., r, denotes its realization. An uppercase letter
near the beginning of the alphabet. e.g.. F., denotes a matrix. The ith—jth element of a matrix F is
denoted Fi, or ((F));;. An underbar denotes a column vector. e.g., d. and a superscript T denotes
the transpose, e.g.. d7. For vectors, subscripts index over the elements, e.g.. 6 = 6i.... .6,]7 . while
superscripts discriminate between different vector quantities, e.g., 8° = [6¢.....62]7. The gradient
operator Vg is. by convention, a row vector of partial derivatives [%,. . 3'-%“1 For convenience.

u=g

when there is no risk of confusion the simplified notation Vg(8) f Vug(u)l will be used for the

aradient of a scalar or vector valued function g(u) at a point u = 6.
Some particularly useful definitions:

e X : the generic observation; e.g., a set of snapshots of the data outputs from multiple
SeNsors.

e r : a realization of X.
e O : the n-dimensional parameter spare.

e f . u: parameter vectors.

—
e d': the Euclidean norm of vector d. ||d}| = \/c_iTz_i.

e f(r.:4°): the probability density function of .X evaluated at X =z, 6 = §°.

[ ]
>

= (X)) : an estimator of 6.

e m(f) : the mean vector Ey @ ) of 6. where 8 is the true underlying parameter.
e b(#) : the bias, m(8) - 6, of 8.

° covg(é) : the n x n covariance matrix of 8, EQ[(Q - m(Q))(Q ~m(8)7].

. xarg(é’l) : the variance of ;.

e F(8) : the n x n Fisher information matrix associated with estimators of 4. This
matrix will always be assumed to have bounded elements and to be invertible with
a bounded inverse F~!(@) over any domain of 8 of interest.




e a, b F,: the Fisher information for 6, the information coupling between 6; and
th.... 80, and the (n - 1) x (n — 1) Fisher information matrix for 6,,...,6,. Note

a b
that £ = [ ) F ], where a is positive and F, is invertible by assumption.
b4 S

e [(8) : the log-likelihood function, In f(X;8).
e 1(6,8°) : the mean log-likelihood (ambiguity) function, Ege{ln f(X;6)].

¢ 4 : a user-specified upper bound on the length of the bias-gradient vector.
e B (8) : the general CR lower bound on varQ(Bal) for estimators with bias b; (@) (28).

e B(#.6) : the new lower bpund on varg(Oﬂl) for estimators with bias b (@) such that
by < & (56).

e AB(6.8) : the normalized difference between the unbiased CR bound and the new
bound, Z€9-BS)

B(8.0)

e ¢! . the minimizing bias-gradient vector which characterizes B(8,6) (65).

Eran

e ) : a scaling constant determined by the solution to the constraint equation on the
bias gradient (57).
e 1) : the sensitivity index of the general CR bound, derived from B(8,6).

Identities

Some vector and matrix identities to be used in the sequel are given here.

o Let 4 be an invertible m x m matrix which has the partition

a (.‘T
A= - ’ ‘ (1 )
c A, R

where a is a nonzero scalar, cis an (m —1) x 1 vector, and A, is an (m—1) x (m—1)
invertible matrix. The inverse of A can be expressed in terms of the partition elements
a, ¢, and A, ([2], Thevrem 8.2.1):

1

1 T 4-1
—_— - A7 ——
4-1 = a—cTA ¢ = U0 a—cTAl ¢

—~A;lrf———l——-—r— A;l + A;-IQL_‘TA;‘(—-—I—T‘)

2a-cTA; e a-cTA e

(2)

e Let A be an m < invertible matrix and let U and V be ' x k matrices, espectively.
If the matrix [A + UV T] is nonsingular, the Sherman-Morrison-Woodbury identity

gives the inverse as ([3], Section 0.7.4)

A+0VT) = At - AT+ VT AT A ()



o For the gradient of quadratic forms and inner products with respect to a vector, we
have the following identities ([2], Section 10.8):

VEQTA_.Z = 2zTA, (A symmetric) (4)
Vey'z = 37 . (5)

-

e If A and B are symmetric matrices which possess identical eigenvectors, then AB =
BA ([3), Theorem 4.1.6). If, in addition, A and B are positive-definite, then AB is
positive-definite ([4], p. 350, Exercise 23).

o Let A, B, and C be matrices and assume B is symmetric and positive-definite. If A
is a scalar, a singular value decomposition of B establishes the following for positive
integer k:

d—‘f\gTAu + ABI*Cz = —kaT ABI + AB]"®+Cz . (6)

o A



3. ESSENTIALLY UNBIASED ESTIMATORS

This section deals with the following general setup of our estimation problem. Let an obser-
vation X have the probability density function f(r:;8). where

-1

8= (0.....6007 (

is a real, nonrandom parameter vector residing in an open subset @ = ©; x --- x @, of the n-
dimensional space IR™. Suitably modified. the theory herein can be applied to more general O (e.g.,
subsets of R™ which are defined by differentiable functional inequality and equality constraints) by
replacing the Fisher information matrix F(8) (21), used throughout the report, with a reduced-rank
Fisher matrix [5]. We use the conventional notation for expectation of a random variable Z, with

respect to f(z;8).
E(2) [ Zia)f(z:8)dr (8)
suppf(e:f)

where supp f(#:8) = {r : f(z;8) > 0} is the support of the probability density function (PDF) f
for fixed 6.

Let 6}, be an estimator of #; with mean E;_;(él) = m,(8) and bias

bi(8) % y(8) - 6. (9)

The bias is said to be “globally removable™ if b; is a constant independent of 8 and “loc. ly
removable over a region 8 € D" if b; is constant over the region D. By convention, when we re «r
to a “region D in O7 we mean a nonempty, open, connected subset of ©. The estimator 6, is sa
to be globally (locally} unbiased if the bias is globally (locally) removable. In the sequel we wi.
address the problem of lower bounding the variance of 6;. given that 6, is “essentially unbiased”
in the sense that for a prespecified constant é € [0, 1]

db(8) ob (8

Y2 < 42
: <é°, Vo .
96, o8, MWE<é® ., Ve o (10)

Vo) = i

Bias gradients contained in the constraint set {d : d7d < §?} for all values of 8 are called admissible
bias gradients. Note, however, that vector functions d(8) exist which satisfy the constraint in (10)
for all  but are not valid gradient functions. and therefore are not admissible bias gradients. The
importance of the bias gradient in (10) in Jower bounding the variance of 6, will be seen in Equation
(28).



The restriction 8 € [0,1] in (10) is sufficiently general, since for § > 1 the gradient can be
taken as Vb = [-1,0,. .., 0]. This bias gradient corresponds to the trivial estimator él = constant,
which has zero variance. Observe that for Inequality (10) to be well defined the bias must be
differentiable. Ibragimov and Has'minskii [6], Chapter 1, Lemma 7.2, shows that under essentially
the same regularity conditions which guarantee the existence of the Fisher information, the bias
exists and is differentiable regardless of the estimator 6,. Hence, the differentiability property is
only dependent on the underlying distribution of the observations, not on the particular form of
the estimator. Differentiability is therefore not a restrictive assumption in characterizing classes of
biased estimators for a particular estimation problem.

More significantly, note that Inequality (10) is a constraint on the rate of change of the bias
and not on the bias itself. However, the definition of an acceptable range of the bias is typically
more natural than the definition of an acceptable range of the bias gradient; this issue will be
discussed presently. For sufficiently small 8, {10) implies that in a practical sense the bias is locally
removable over any prespecified finite region; therefore the estimator is locally unbiased. On the
other hand, for bounded parameters (10) can be related to global unbiasedness.

The bound presented here is applicable if, for example, a user is interested in a lower bound
on estimator variance which applies to a class of estimators permitted to have small, perhaps
“acceptable,” biases over a parameter range of interest. As mentioned previously, it is generally
more natural to specify an acceptable range of biases than an acceptable range of bias gradients.
We will now show how the former can be converted to the latter. Assume that the user specifies
an ellipsoid of parameters centered at some parameter § = v and a maximal allowable variation in
the bias over the ellipsoid. This requirement is stated mathematically as

b1(0) -1 (6°)) < v, V6,8° € {u: |diag(Ki)(u —p)l <1} . (11)

where diag(K;) is a diagonal matrix of positive constants and the user-specified quantities Aj,..., K,
and ~ determine the ellipsoid and the maximal allowable bias variation, respectively. The ellipsoid
of (11) also reflects the user’s choice of units to represent each of the parameters.

To standardize the analysis, it is convenient to normalize the ellipsoid to a sphere via a coor-
dinate transformation (scaling) of the parameters. This coordinate transformation is implemented
by premultiplying parameter vectors in the original coordinates by the diagonal matrix diag(K;)
in (11). The reader may verify that the result of this transformation is to replace the quantities
[0,6° v.b1(8).b;(8°), 7] (which are parameterized in the original coordinates) in (11) with the quan-
tities (diag(K, ' )0.diag(K; ')8°.diag(K, ' )u. K7 ' 01 (8), K7 '8, (8°), K1 '] (where [8,8°,v,b1(8), b1 (8°), )

are parame_erized in the new coordinates). It is then seen that (11) becomes equivalent to a bias
constraint over a displaced unit sphere in the new coordinates

b1(8) - b1 (8°) <, V8.0°€{u:lu-vul<1} . (12)




Throughout the rest of the report it is assumed that the user ellipse has been normalized to the
standard spherical region (12).

The following proposition translates the user constraint on the bias (12) to the constraint on
the bias gradient (10).

Proposition 1 Let b () be a differentiable scalar (bias) function, with (bias) gradient Vb,, over
the spherical region 8 € & & {u :llu —v]] <1}. Then the set of n dimensional vectors

D, £ (d: |d|j < v/2} (13)

defines the largest region in R"™ containing gradients Vb, for which by (e) satisfies the requirement
(12), in the sense that:

1. If Vb € Dy, € 8", then by (e) satisfies the requirement (12).

2. If D is such that D, C D (strictly proper subset) then D' contains a vector Vb,
8 € S*. which is the gradient of a function b (e) that wolates the requirement (12).

Proof of Proposition 1. Because b, (@) is differentiable and the sphere S™ is a convex set, we
have from Rudin [7], Theorem 9.19,

b1(8) — b1 (8°) < M6 - 6°l, v8.,6°eS™ (14)

where M is an upper bound on [|Vb,|| over S*. Because the maximal distance between any two
vectors §.6° in the unit sphere S™ is 2, the inequality (14) can be replaced by

b1(€) ~ b1 (€°)) < 2M, VB,8°€S" . (15)
Now, if Vb, € D,, then [[Vb;|| < v/2 so that, using M = ~/2 in (15),

which proves Assertion 1 of the proposition. However, if 7’ contains D, as a proper subset, a
constant vector d € D’ exists such that ||d|| > v/2. Let the gradient vector Vb; be defined as the
constant d7. Because Vb, = dT is independent of 8, we have b; (@) = dT@ + C for some constant
C. Consider the two vectors

[y

f=v+ —d

b=v+gd (a7




1

O =y—md . (18)
Il
These vectors are on the boundary of the sphere 8" because ||@ — 8°|] = 2; furthermore,
[b1(8) = br(8")] = |d"[8 - )]
2
= W7 [ = e
li]]
> (1 /22=1 . (19)

so that the requirement (12) is violated. This establishes Assertion 2 and cumpletes the proof of
Proposition 1.

Proposition 1 asserts that to satisfy the bias requirement (12), the constraint ||[Vb|| < 6.
with & = v/2, is the weakest possible gradient constraint which satisfies that requirement and is
independent of 4. It must be emphasized that before the proposition can be used the user ellipsoid
{8 : ||diag( L,)[8 - ]|l < 1} has to be transformed to a sphere via the coordinate transformation
described in the paragraph following requirement (11).

It is important to note that Proposition 1 does not address the existence of estimators having
the bias function b; prescribed by Assertion 2 and violating the requirement (12). Specifically,
in proving Assertion 2 we produced a function b; and its gradient Vb;, which violate constraints
on function variation and constraints on gradient magnitude, respectively. While this shows a
certain topological equivalence between these two tvpes of constraints, there is no guarantee that
the function b is the bias I"Q[Q] — 8 of any physically realizable estimator 8(X).

10




4. INTERPRETATIONS OF THE CR BOUND

Define the vector of estimators § = (91,... R )T of parameters in the vector Q Assume that
the PDF of the observations is “regular” (6], Chapter 1, Section 7) and that E4[6?] is bounded,
i = 1,....n; then the gradient of the mean m;(8) = Eg[f;] exists, i = 1,...,n, and is continuous,

and the covariance matrix of @ satisfies the matrix CR lower bound By(8) ([6], Chapter 1, Theorem
7.3):

covg(8) > By(8) = [Vm@))F 1 (0)Vm(@)” . (20)

In (20), F = F(8) is the nonsingular n x n Fisher information matrix
F(8) € EglVyIn f(X;w)lu—gl [Vuln f(X;u)lug] (21)

and Vm = Vrm(8) is an n x n matrix whose rows are the gradient vectors Vm;, i = 1,....n. Under
additional assumptions ([6], Chapter 1, Lemmma 8.1) the Fisher information matrix is equivalent to
the Hessian, or “curvature,” matrix of the mean of In f(X;u):

F() = —EgVIVyln f(X;u)ly=g = —V; VuEgIn f(X;u)luse - (22)

If the vector estimator § is locally unbiased, then Vm(6) = I and the lower bound (20) becomes
the unbiased CR bound

cove(d) > F'(@) . (23)

Comparison between the right-hand sides of the general CR bound (20) and the unbiased CR
bound (23) suggests defining the biased Fisher information matrix F

F©) € V@) TFO)Vm@) (24)

where it has been assumed that the matrix Vm(@) is invertible. With the definition (24) the general
CR bound (20) becomes

cove(8) > ' . (25)

i1




Because varg(él) is the (1,1) element of oon(Q), the matrix bound (20) gives the following
bound on the variance of 6, :

varg(61) > e (Vm(@)F ' (@)Vm(@)Te; (26)
where e, is the unit {column) vector

e; = [1,0,...,0]T . (27)
Note that, concerning the CR bound on él, only the first row of Vm is important. The following,

denoted the general CR bound in the sequel, is equivalent to /26):

varg(61) > By, (8) & [Vm,(8)/F~1(8)[Vm,(8)]”

= lei+ Vai @) F1@)e; + VB (8)T] (28)

where, in the second equality of (28), the relation (9) has been used.

Observe that a lower bound on the mean-squared error (MSE) of 6, , A SEq 6) & Ey [6:-6:12,
can be obtained from the variance lower bound (28) by using the relation MSEy 6,) = varQ(él) +
B (0):

MSEg(61) 2 By, (6) + 6(6) . (29)
Any lower bound on the variance is also a lower bound on the MSE, as the second term on the
right of (29) is non-negative.
For locally unbiased estimators of 8;, the gradient vector Vm;(8) is the unit row vector e;
and the CR bound is the (1,1) element of the inverse Fisher matrix

varg(61) > el F'(@)e; (30)

which will be called the unbiased form of the CR bound on ;.

The following interpretations are helpful in understanding the influence of bias on the CR
bound.

12




4.1 CR Bounds and Unbiased Estimation of the Mean

The gencral matrix CR bound (20) on the covariance of a biased estimator # of 6 can be
equivalently interpreted as an unbiased CR bound, just as in (23), on the covariance of § viewed
as a “differentially unbiased” estimator of s mean m(8).

Fix a point 8° € ©. An estimator § with mean m(8) is defined to be differentially unbiased
at the point 8 = 6° if Vm(8°) = I, where I is the n x n identity matrix. Note that, under the
assumption of differentiability of m(#), a locally unbiased estimator is necessarily differentially
unbiased. As m(f) is a differentiable function of §,

m(f) — m(8°) = Vm(8°)(8 - 8°) + o(|i8 — 6°}i) (31)

so that m(@) is a locally linear transformation in the neighborhood of #°. Assuming the matrix
Vm(8°) to be invertible, this permits a local reparameterization of © by the values v taken on by
the linear approximation to the function m(@) over this neighborhood:

v =v(0) % Ym(6°)0 - 8°) + m(6°) (32)

and
6=0()% Vm(©°) ' -me°) +6° . (33)

Using (33) and the chain rule of vector differentiation,
VEEQ(E){Q} = V,m((v)) (34)
= V,m([Vm(6°) ' (x — m(8°)) + £°)
= Vum(u)lu=ivme)-1 ¢-m@)+e2) (V@)™
= Vm(9)Vm(@°)™!

When 6§ = 8°, the last line of the above is the identity matrix so that @ is a differentially unbiased
estimator of the transformed parameter v at the point v = v(8°) = m(8°).

) Because § is a differentially unbiased estimator of » = m(8°), the CR bound on the covariance
of @ at 8° is given by (23) with Fisher matrix F'(§°)

F(6°) = Ep[Viln f(X;0W)lyame))” [Vuln A(X;:00)ume) - (35)

13




Use of the relation (33) and application of the chain rule yields

Vo In f(X:0W)lyemeey = Vel f(X;[Vm(@) ™z - m(8°) + 6°)),—me°)
= Vuln f(X;w)luge V()" . (36)

Substitution of the above into (35) yields the form

F(8°) = [Vm(@°)]"T Ege[Vyln f(X:w)lymge]T [V In f(X; )|y pe} (Vi (8°)] "
= k() . @37
Hence, the Fisher matrix F’(8) (37) for (differentially) unbiased estimation of m(f) is identical to
the biased Fisher matrix F,(8) (24) for biased estimation of 8.

We can therefore conclude that there are two equivalent ways of interpreting the biased Fisher
information, alternately the CR bound (20): a measure of the accuracy with which the mean m(d)
of Q can be estimated without bias; and a measure of the accuracy with which the parameter § can
be estimated with bias.

4.2 CR Bounds and Sensitivity of the Ambiguity Function

Define the log-likelihood function !
16) = n f(X;0) (38)
and the ambiguity function
lw.8) Eplin f(X;u)] . (39)

For a fixed value § = 6° of the parameter, the ambiguity function is simply the mean log-likelihood
function. Although the arguments u and 6 reside in the same space O, it is useful to distinguish
between the search parameter u and the true parameter 6.

Two important properties of the ambiguity function are 1. I(u,8°) has a global maximum
over u at u = #° and consequently, if V!l_(g,Q")iEd_;o exists, I(u,8°) has a stationary point at u = §°:
Vau f(g,Q°)|!=Qo = 0, and 2. the sharpness of this maximum is related to the Fisher information
matrix F(8°). Due to the latter property, the general CR bound {26) can be investigated through
a study of the smoothness of the ambiguity function.

To see 1. as defined in the preceding paragraph, observe that for # = §° and arbitrary u € 6,

10.0) — l(u.0) = Egfln f(X;8) - In f(X;u)

14




= / f(z:0)n f(z:8) — In f(zsu)lde | (40)
supp f(®:0)

where supp f(e;8) = {z : f(z:8) > 0}. Using the elementary inequality Iny < y — 1, y > 0 ([8],
Theorem 150), we have the following:

i9,0) - l(u,0) = - /su gm0 f@w

f(z;8)

a /suppf(o;Q) f(I’Q) [ﬁ:z; N 1] a

/ flzs0ydz — | f(z;u)dz
supp f(#:8) supp f(e;8)
= 1-p , (41)

v

where p € [0,1]. Hence, since 1 —p > 0 in (41), 1(8,8) > l(u,8), Vu; thus, I(u,8) has a global
maximum at u = 8.

For 2., observe that the incremental variation A,l, in I(u,8°), which is produced by an
incremental change in u from u = 8° to u = 8° + Au, is given by the Taylor formula

A 190+ Au,6°) - 1(6°,8°)

= V8o Bu + 5 00T [TV, 0| Bu e (a2)

In (42). € is a remainder that falls off to zero as of||Au|[?). Use the fact that Vyl(u,8°)ly—g> = 0
and identify the Fisher matrix F (22) in the quadratic form on the right-hand side of Equation
(42) to obtain

Al = —%AQT F(6°)Au +¢ . (43)

From (43) it is clear that a small variation, Ay, in the search parameter u produces a quadratic
variation in I(u,8°), with F playing the role of a gain or sensitivity matrix. Let the difference, Au,
between the search parameter and the fixed true parameter 8° vary over some differential region
defined with respect to the standard orthonormal basis for R. If the Fisher information is a high-
gain matrix, e.g., F' has large eigenvalues, then the ambiguity function will have a large variation
in the corresponding eigenvector directions. In view of the dependence of the unbiased CR bound
{30) on F, this suggests that the sharpness of the peak of the ambiguity function in the standard

coordinates is directly related to the CR bound on unbiased estimators of 8.

Now, let Vm(8°) be the gradient matrix (Jacobian) of the mean m(8°) of a biased estimator
and assume that Vm(g°) is invertible. Using the identity [Vm(6°)][Vm(6°)]=! = I in (43), we
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obtain, by regrouping terms.
A = 3T [Vm(@)TVm(e*)) T FE°)Tm(E) ! Vm(@) Au + ¢
= 2 [VmE)au {[VmE)] TR VmE) "} [Vn(@)au] + ¢
= S ATREr e (44)

where F; is the biased Fisher information (24) at § = §° and
Av ¥ Im(8°)Au (45)

is the differential parameter variation Av = v — v(8°) in the new coordinates induced by the local
transformation (32), v = Vm(8°)Au + m(8°). The relation (44) is similar to the relation (43) in
that they both relate variations in the search parameter, Au and Av, respectively, to variations in
the ambiguity function / via a gain matrix, F(8°) and F(6°), respectively. If we fix a differential
region of variation for Au and Ay in (43), F(8°) is the gain associated with variation Au over
this differential region in the standard coordinates, while in (44) F3(8°) is the gain associated
with variation Ay over this differential region in the transformed coordinates (45). In light of the
dependence on F; of the general biased-estimation CR bound (25), this suggests that for biased
estimators the sharpness of the peak of the ambiguity function at Au = 0 in the transformed
coordinates (which give a locally linear approximation to the mean function) is directly related
to the general CR bound, which, as noted previously, is the bound which applies to unbiased
estimation of the mean function of the estimator. Comparing this observation to that made after
(43), we see that in either the standard or transformed parameter coordinates the sharpness of
the peak of the ambiguity function is directly related to the CR bound that applies to unbiased
estimation ir: these coordinates. The relation between the general CR bound and the variation of
[ is explained in greater detail in the following paragraphs.

Using (42) and (45), the variation of the ambiguity function as Ay varies in the transformed
coordinates of (45) can be explicitly given in terms of the gradient matrix Vm(8°),

A = 10°+ Bu) - 18°) (46)
= 8"+ [Vm(@*) ™ Av) - I(8%)

In (46) [Vm(8°)]~! Av is the differential in the standard coordinates that is induced by the differ-
ential Ay in the transformed coordinates.

For purposes of illustration, consider Figure 1, denoting a (spherical) volume element {Av :
JAv|| = A} in the transformed coordinates Ay = [Vm(8°)|Au, and Figure 2, denoting the induced
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Figure 1. A spherical volume element {Av : [Av|i = A} m the transformed coordinates
Arv = [Vm(87)]Au.

(ellipsoidal) volume element {Au : ||[Vm(8°)]Aull = A} in the standard coordinates. Figure 2

corresponds to the case

where @ < 1 and b > 0. In Figure 2 the angle of the principal axis can be shown (through
considerable algebra} to be

_ 2 rl-¢)-(1-a)?
‘”_ta“1< (1= a)b ) '

and the positive parameters r and ¢* are given by

, e (1-a+8+1
- 2
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Figure 2 The mduced differential volume element {Au : [ [Ym(8”)]Au! = A} m the

standard coordinates s an ellipsowd

Referring to Figures 1 and 2, let Ay vary over the radius-A n-dimensional sphere {z : ||z}l <
A} (Figure 1). For unbiased estimation [Vm(8°)] = I and the variation in the argument Au =
Tm#°) 'Av = Ay, of A,il- (46) is over the same n-dimensional sphere. For biased estimation
V¥m(6°) is not an identity matrix and the variation in the argument Au is over the n-dimensional
ellipsoid {z : {|[Vm(8°)]z{l < A} (Figure 2). Under a set of bias constraints of the type (10) on each
of the rows of Vm(@°), this ellipsoid can only be a small perturbation of a sphere. Nonetheless, if
the ambiguity function has an unstable characteristic locally in the standard coordinates, such as
a sharp ridge, then the differential variation, Ayl, of I over the ellipsoid in Au can be made much
larger than the differential variation of I over the sphere in Ay by judicious choice of Vm(8°) (see
Figure 3). The variation of [ over the sphere of radius A in Av can be used to bound from below
the general CR bound on variance (26) for estimators of 8, by using the following fact.

18




Figure 3. The constant contours of a hypothetical ambiguity function l(u.8°), over u € O
for fired 8 = 8°, and the superimposed mduced differential volume elements of Figures 1
and 2. Because the ellipsordal region ncludes a greaier number of contour hnes, the
mazimum variation of [ over the ellipsoidal region is greater than the variation over the
spherical region.
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FACT™:

2

A 5-1
> — : , 47
B 2 5l amt, Bl e o

where By, is the CR bound (28) and € is o [|Av|?) = o(A?).

Hence, if the variation of I is small, i.e, [ has a broad peak, in the transformed coordinates,
then (47) asserts that By, must be large, implying poor variance performance of estimators of 6;
with mean gradient matrix Vm(8). More important, if a bias-induced coordinate transformation on
the search parameter Av = [Vm(8)]Au can be found for which the local variation of the ambiguity
function over the ellipsoid {Au : ||[Vm(8)|Au|| < A} is large, then a reduction in the CR bound
may be possible.

Proof of Fact. Fix a parameter value §. Define Av:

——A \ ' (48)

-1
where F, ? is a square-root factor of the (positive-definite) matrix F; ' [see (24)].

It is shown that Av (48) is a vector contained in the radius-A sphere {z : |lz]| < A}, because
the norm squared of Ay is

Avl? = A?
1Ayl TF e,
Tr—1
e1Fy €12 2
= 28 ZAZ A . 49
elTFL—I.Cil “9)
o

Sl A into (42) and (44), A,/ has the form

€

l(6 +[Vm(e) ' Av) - 18) = —5ArTRAY +o(a?)




1 T _1
1 F;—2§1 Fb ‘e 2
= — |——==A| F Al + ofA*)
2 |\eIF e el F e
A? eTe,
= A2
2 TF e T )
AT
= T 4 oA? . 50
2 TR e, o(A”) (50)

Now (50) gives the value for Agl— evaluated at a point Av (48) contained in the radius-A sphere.
Hence, the maximum magnitude of A,l over the radius-A sphere must be at least as great as the
magnitude of the right-hand side of (50). This, and the elementary inequality |z — y| > |z] — |yl,
gives the bound

- A2

l

JAo>D e 2 . 1
!IA;IIII?)S(N Al 2 2 By (8) +oA%) (51)

Multiplying this inequality through by By, / maxja,z<az |A,l| gives the statement of the fact (47).
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5. A NEW CR BOUND FOR ESSENTIALLY UNBIASED ESTIMATORS

Here we obtain a new lower bound which is applicable for essentially unbiased estimators,
i.e., those whose bias gradient is small. Assume that the bias b; is such that ||Vb; (8)(|*> < 62 for all
6 € ©. The starting point for the lower bound is the obvious inequality [see (28)]

Bb1 (.0_) 2>

' TF e +d . (52
2 i ey +d F ey +d] (52)

varg(6:) > By, (6) > min
o012 Bn®) 2| it e

This gives the lower bound valid for estimators 6, which satisfy the bias-gradient constraint (10)

varg(61) > B(6,6) (53)
where
B0,6)% min le,+d F e, +d . (54)
B dildir<e B

Note that by definition B(#,0) is just the unbiased CR bound. The bound (53) is independent of
the particular bias, b, of the estimator as long as the bias constraint is satisfied. The normalized
difference

B(Q,O) - B(Q76)

AB6.9) = 550

(55)

is the potential improvement achievable over an absolutely unbiased estimator, i.e., AB(8,6) mea-
sures the bias sensitivity of the unbiased CR bound. The sensitivity is a real number between 0
and 1, and increased sensitivity corresponds to a larger difference.

The new bound is specified by the solution of the minimization problem (54). We find the
solution in the following theorem and corollary.

Theorem 1 Let §; be an essentially unbiased estimator of 8, with bias b1 (8) which satisfies the
constraint (10) ||Vebn || < 62 < 1. The lower bound B(8,6) (53) is equal to

B(8,6) = B(8,0) — \8® ~ e[l + AF|'F'e; (56)

where X is given by the unique non-negative solution of the following equation involving the mono-
tone decreasing conver function g()) € [0,1]:




g E T+ AF)2e, =6, A20 . (57)
Corollary 1 An dlternative form for the bound (56) is
B(8,6) = [e1 + dmin]” F M ler + dmin) (58)

where d,,,, is the vector which minimizes the quadratic form [e, +d|T F~}le, +d) in (54) over the
constraint set {d : ||d|| < 8}

dt, = —el[Il + F)71 . (59)

=run

In (59), X is the solution to (57).

Observe that the vector d,,, (59) of Corollary 1 is related to the function g(A) (57) of
Theorem 1 by the identity

A inmin = €1 [T+ AF]%e; = g(A) . (60)

Because g(A) = 6% in Theorem 1, d,,,;, is on the boundary of the bias-gradient constraint set.

Proof of Theorem 1. The objective is to show that the right-hand side of (54) is equal to the
right-hand side of (56):

Q(dmin) (61)

min d
d:|d|f? <82 Q(d

= B(0,0) —x82 —el[I + \F)"1Fte;,

where the general CR bound (28) has been denoted by the quadratic form Q(Vb;) to make evident
the quadratic dependence on the bias gradient Vb,

Qd)E ey +dTF ey +d) . (62)

We take a geometric point of view which is easily formalized by using standard Lagrange
multiplier theory. Specifically, Q{(d) is a convex-upwards paraboloid centered at coordinates —e; =
—(1,0,...,0]T, and Q(—¢,) = 0. The problem is to find the vector d = d,,;,, within the radius é
ball, d7d < 82, for which Q(d) is a minimum. Observe that by the assumption § < 1 the absolute
minimum of Q is not attained within the radius é ball. Therefore, as there are no local minima,
the minimizing vector d,,, must be on the boundary of the ball. By inspection of the constant




contours of Q(d) (Figure 4), the minimum is attained when the contour of Q(d) is tangent to the
boundary of the radius é ball, i.e., the gradients are collinear and of opposite sign;

VaQ(d) = -AV4 d'd (63)

for some A > 0. Using the rules of vector differentiation for quadratic forms, (4) and (5), (63) is
equivalent to

Flley,+d=-xd . (64)

152077-4

Q(d)

min

Figure 4. Plot of the constant contours of Q(d) and the domain of the constraint dTd <
The minimum of Q is achieved at the point indicated by the vector d,,;, which is
normal to the tangent plane between Q(d) and d7d = &°.
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Solving (64) for d = d,;,, gives
d=dpmin=-T+XF]le, . (65)

Note that the matrix inverse [I + AF]~! exists, since A is non-negative. The scaling constant A has
to be chosen so that d is on the boundary of the radius é ball d: H4H2 < 62, from which we obtain
equation (57) for A,

9N E dT, drin = €[ I + AF)2¢, = 82 . (66)

“min

Observe that g(0) = 1, g(oo) = 0, and because F is positive-definite, g(A) > 0for A > 0. Application
of the differentiation identity (6) to g()\) gives ¢'(A) = —2eTF[I + AF]73¢,. Due to positive-
definit ‘ness of F, |g’(A)| < oo so that g is continuous at all points A > 0. Furthermore, since
[I + AF)=3 is symmetric positive-definite with identical eigenvectors as F, F[I + AF]~3 is positive-
definite (see Section 2.2) for A > 0. Hence, g is monotone decreasing over A > 0 with values
g(A) € [0,1]. In a similar manner, the second derivative ¢’ can be shown to be positive, which
establishes that g is a convex (upwards) function.

It remains to show that the minimizing solution d,,;, gives the bound (56). This is established
by substitution of d,,;, (65) into Q(d) (62):

B(0.6) = Qldmin)
= e+ dmin)” F 11 + rmin]
= elFle —el[I + AF|71F1¢
~ J[FU+ AR - [[+ AT L4 0F] e (67)

In (67) we have made use of the property of symmetry of the Fisher matrix. The first and second
terms on the right-hand side of (67) are simply the unbiased CR bound (30), B(#,0), and the final
term on the right-hand side of (56), respectively. Using the constraint (66), the third term in (67)
is seen to be equal to

el [F7HI + AFI™ = [ + AF| 7 F Y I+ 0]
= I+ AF]7 I+ AFIF - F7Y 1+ 0F) g

= e[ + AF|7YAII + AF) e
= 2T+ M\F|72¢, = 267 . (68)

This establishes the theorem.




As stated, Theorem 1 gives a bound B(8,6) for which the (1,1) element of the inverses
of the n x n matrices F[I + AF] and [I + AF)? must be computed. These calculations can be
implemented by sequential partitioning [9]. A more explicit version of B(8,6) will be of interest for
the approximations of Section 6.

Let the Fisher information matrix F (21) have the partition

F =

T
¢ , (69)
c K

where q is a scalar, cis a (n — 1) x 1 vector, and F; is a (n — 1) x (n — 1) submatrix. Define the
inverse matrices

T
F—l%‘[" g ] , (70)
g T
T
TV o S A . (71)
B8, T

Using the partitioned-matrix inverse identity (2), a, aa, I, 8, and 8 , have the following expressions
in terms of the elements of F (69):

a = (@-c"F e (72)
8 = —aF ¢

I = F'4aF'c«TF!

an = (14— XTI+ AF,)¢)? (73)
B, = —Aall+XF] ¢

The quantity I'y will not be explicitly needed and is omitted.

In (69), ¢ represents the information coupling between estimates of 6; and estimates of the
other parameters @y,...0,. This can be seen from the fact that for unbiased estimation the CR
bound on 8, (30) is (F~');; = a = (a — cT F;'¢)!, which is identical to a~! in the case ¢ = 0
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Theorem 2 In terms of the partitioned Fisher information matriz (69), the bound B(6,6) and the
associated constraint equation (§7) of Theorem 1 have the expressions

B(8,6) = B(8,0) - A8* —ana - 818 (74)
and X is the unique positive solution of

) = 1+ X271+ AF,] 2¢
IV = W xa = 22T + AF o)

= §° ) (75)

Furthermore, the minimizing vector (65) of Corollary 1 is given by
Qrin = [0, =857 = ax[-1 AT [T + AR 7T (76)
In (74), (75), and (76) a, ay, B, and 3, are the quantities given in (72) and (73).

Proof of Theorem. Substitution of the inverses F~! (70) and [I + AF]~! (71) into the expressions
for B(8,6) (56) of Theorem 1 gives

T T
B(Q,O) _ A62 _ QT { (25} é,\ a é €
B, h[[8 T
= B(68,0) - * — [ax, 8] ][a, 87T

B(6.6)

= B(0,0)- X’ —ara-818 (77)

which is expression (74). Similarly, substitution of (71) into the expression for d,;, (65) of Corol-
lary 1 gives

dmin — —+AF7'g
ay BT
= - 2 e =l-ar-8]7
B, Ti
= ay[-1, T[T+ 2F,)7YT (78)

where, in the last line, the identity for 3, (73) has been used.

Squaring the matrix [I + AF]~! (71), we find that the constraint equation (57) of Theorem 1
has the following expression:




gA) = ][I+ AF) %, = a} + 873, = 82 . o)
Application of the identities (73) to the previous equation gives the equivalent expression for g,

9(N) o} + NadT[1+ AF) % (80)

ad[1 4 A%T[T + AF) ™3]

14 AT+ AF]" %
(14 Aa = A2cT[I + AF]~1e)? '

which is equivalent to the expression in (75). This completes the proof of Theorem 2.

The bound in Theorem 2 does not have an analytic form in general because the solution A to
(75) is not given explicitly. Numerical polynomial root-finding techniques can be used to solve (75),
or equivalently (57), for A. In particular, as the Fisher matrix Fy is positive-definite and symmetric
it has the representation F, = Q®Q7T, where Q is an orthogonal matrix with columns g, and ® is
a diagonal matrix with diagonal elements ¢; > 0,1 = 1,...,n. Hence, we have

el [l + AF]7%¢ el (I +2Q2QT] %, (81)

= ¢ (QU+ )\d)]QT)_le

= ¢ QI +29)7%Q7,

- R ST R
= L ieplds)

=1

Therefore, inserting the expression into the left-hand side of (57) and multiplying both sides by
m1[1 4 Ae:]?, we obtain a polynomial equation for A:

- —1___ T \2 - f12 52 - A 32 8
g(l_*_Aé‘_)g(—lﬂ,) ]1;[1[1'*"\01] = ,131[1+ ;] (82)
Y T+ xeel g = 6 L0+ 2oy
1=1 3#4 1=1

Subtraction of the right-hand side of (82) from the left-hand side gives a polynomial in A of degree
2n which must be set to zero.

For the special case of zero information coupling, ¢ = 0, an explicit expression for A can be
found and the bound B(8,6) of Theorem 2 has an explicit form. From the definitions of a, aj, B
and g/\ (72) and (73), ¢ = 0 implies that a = «™! = B(8,0), oy = (1 + Aa)7?, and g = g,\ = 0.
Furthermore, from (75)
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5’~’=g(,\)___1__ a? , (83)

T (14 Aa)?
and, consequently,
A=a (571 -1) . (84)
Hence, using (83) in (76)
i = [~ 07]T = [-0.07]T = ~be; . (85)

and, from (58), the bound is

B(8.¢) ley 4 drmin) T F ey + doinl (86)

ey —6e))TF ey — be,] = (1 - 6)%T F g,
1 1 1 1 1

= (1-6)2B(8.0) = (1~ 6)%a?

Observe that zero information coupling implies two important facts: small bias gradients have
very little effect on the general CR bound. as the difference (55) AB(8,8) =1 - (1 — §)? = 0; and
coupling of the bias, b;. of §; to the other parameters 03, ....8, is not likely to significantly reduce
the CR bound, as the CR bound's minimizing vector d,,;, (85) makes the bias of 6, independent
of the other parameters.

In the following sections we will assume that ¢ # 0.
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6. A BIAS-SENSITIVITY INDEX AND A SMALL-6 APPROXIMATION

In the previous section the form of a CR-type bound B(f.6é) was given in terms of an un-
determined multiplier A given by the solution of g(A) = 8% (75). For the case of zero information
coupling, g(A) has a simple form, giving an explicit solution for A and B(§,6) (86). Otherwise, an
exact analytic form for B(4.4) is difficult to obtain and the solution A to (75) might, for example,
be calculated using numerical polynomial root-finding techniques applied to (82). In this section
an o(6) approximation is developed for B(#, ) which converges to the true solution as é approaches
zero. Associated with the approximation is an approximate minimizing bias-gradient vector d,;.,
which achieves the o(é8) approximation to B(8, 6).

While the approximations offer little computational advantage relative to the implementa-
tion of the exact computation indicated in Theorems 1 and 2, the approximate analytical forms
provide some insight into the important factors underlving the bias sensitivity of the CR bound.
In particular, the bias sensitivity of the CR bound is characterized by the slope of B(8,4), at
6 = 0. A large slope implies that a small amount of bias can substantially decrease the nominally
unbiased CR bound, corresponding to high sensitivity. In the sequel, this slope will be related to
a bias-sensitivity index.

For convenience, formula (75) is repeated here:

1+ /\QQTU + AF)"%¢

— £2
TES YD FS VAL AR (87)

g(A) =

The idea behind the derivation of the o(é#) approximation follows. Theorem 1 established that g(\)
is convex and monotone decreasing over A > 0. g(0) = | and g(oo) = 0. Therefore, for a sufficiently
small value of §, the solution A to g(A) = 62 is sufficiently large so that simultaneously

AT+ AF) = TF ' and A2T[1 + AF e~ cTF 2% . (88)
If (88) holds. the constraint to be satisfied (87) becomes the simpler equation

1+ F7%e
(14 Ma - cTF )

2 (89)

from which the solution A is simply computed by taking the square root of both sides of (89) and
solving for A. This solution can be plugged back into (65) and (56) to obtain approximations to
d.., and B(6.6).

The following proposition puts precise asymptotic conditions on the solution to the constraint
equation (87) to guarantee the validity of the approximation (89).




Proposition 2 Let \* be qiven by the non-negative solution of (89)

v 1+ TFs_z
A (~1 + ——g——g) a—c"F gt (90)

6
and assume ¢ # 0. Corresponding to X*, define the vector d),;, ;
i & [T+ X F) e (91)

With these definitions, A* approzimates the actual solution X of g(A) = & , A > 0 (75), in the
sense that

1. 0 < g(A*) < &%, so0 that d,;,, does not violate the constraint (10) on the bias gradient.
(Recall, from (60), that g(A*) = |[d7mn >.)

2 M — XNb6=ay1+cTF %c+0(6) as 6§ — 0.

As a consequence of 2., A§ = O(1) and also i = O0(6).
To prove Proposition 2 we will use the following:

Lemma 1 Let ¢ # 0 and define the positive quantity q;

T -1 T -2,

def . | Fy'e T,

! S s S Z s s 92
¢ = min {QTF,‘ . CTF,—SQ} (92)

Then \g — oc as § — 0. Furthermore, the following bounds are valid for all X > 0:
TF(1- 50 ) SATU+ARe< TR e (93)
2

TF % (1 - E> SN+ M, 2c<TF2%e . (94)

A weaker set of bounds is obtained by replacement of q in (93) and (94) by the minimum eigenvalue
Fuo  of the matriz F,. Furthermore, from (93) and (94), AT+ AR e=cTF e+ O(}) and

XTI+ AF,[2c = cTF2c+ O(1).
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Proof of Lemma 1. Recall from Theorem 1 that ¢ is a continuous. monotonically decreasing
function with limy_o g(A) = 0. This implies that the inverse function ¢~! is continuous monoton-
ically decreasing with lims_g g~ !(6) = oc: therefore. if ¢ is fixed and nonzero, for sufficiently small
6 the quantity Ag can be made arbitrarily large. Hence, Ag — oc as § — 0 as claimed.

The right-hand inequalities in (93) and (94) follow from the inequality for a positive-definite
matrix A and arbitrary vector r:

gT{I + A]'kl <zTa*z (95)
for any integer & > 0. This can be proven via an eigen-decomposition of A. The left-hand inequal-
ities in (93) and (94) are established by application of the Sherman-Morrison- Woodbury identity
(Equation (3));

-1 - l<—]__1__—1 _‘_l‘——l—ll,—l
oy 1 ~1 =1
= SET - SUHARITE . (96)

Application of (95) and (96) to ¢T[I + AF,)" ¢ gives directly
AT+ AF) e = JTF - i+ AE)YE e

)

. JEpY -1
= TF ' e—cTF I+ AR, VF ¢

1
> Fle- 5 Fo
- 1 cTF 2 .
= TF7 (1 - L'I'F:";) (97)

Application of (95) and (96) to ¢TI + AF,]~2¢ yields

AT+ AR %

N I+ M) I+ AF) ¢

= Ang[lF;’ - l[1 + AF,]-‘F;'][EF;‘ - l[1 + ARV e
A A A A

= TF 2271+ MF)VF %+ ¢TI+ AF)2F %

> TF7 e~ 2T+ M)V 2

= TF -2 F7N I+ AF) Ve

27

> TF % - 3¢ F3¢
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T -3
= TF % (1 - gQ—F’—g) : (98)
s €

L Llad

In obtaining the inequalities (97) and (98) we have used the fact that [I + AF,|™}, F;’!, and F,

are positive-definite matrices with identical eigen-decompositions; hence (see Section 2.2}, these
-2

matrices commute and [ + AF,] 2F; 2 is positive-definite. By the definition (92), 1/¢ > f%rf

and 1/q > f-:—?;—i, so that the right-hand sides of the inequalities (97) and (98) are underbounded

by the right—-han& sides of the nequalities (93) and (94) in the statement of the lemma.

Recall the variational inequality ([3], Theorem 4.2.2) for any compatible vector : and sym-
metric matrix A:

>N (99)

where A4 is the minimum eigenvalue of A. Apply (99) to the lower inequality in (97) along with

the definition = def Flc
1cTF 2 1 :T:
T -1 = te & T -1 £ =
°r Q(l'xcrp,—lg) R G E
T -1 1
> ¢ F, g(l - —F ) . (100)
AAYTI’!"

2cTF 3¢ 2 :T:
T -2 = s £ _ T -2 + =
< h £<1— XQTFI"’Q) -k 2(1—3\571’,;

2
(1_ o ) : (101)

Proof of Proposition 2. Application of the inequalities in the lemma to the expression for
g(A) (87):

v
~
b..]
3
~
)

This establishes the lemma.

B i+ A2+ AF,) %
T (14 Xda - XTI + AF,j~1c)?

9(A) (102)

evaluated at A = A\* gives



1+ cTF (1 - 2(07q)7 ") 1+ cTF % 2

S oS =6 103
(14 A (a =T Frle(l = (AP <g(A) < (103)

(14 A=(a~ cTFTe))?

The right-hand inequality in (103) establishes statement 1. in the statement of the proposition:
g(A") < 6%, Because the lower bound in (103) approaches the upper bound 6%in (103) as A*g — oc.
g(A") is forced to 62 as \"¢ — oc. or equivalently. by the definition of A* (90), as § — 0. To
establish statement 2., recall that g(A) = 6 (75) and consider the following:

i
>

A6 9( M) (104)

_ 1+ T[]+ AR
B (14 da = X271+ AF)"1¢)?

U+ 22T+ A2
T4 a= AT+ AF]- e

1

Now, by Lemma 1, (104) becomes

Y1+ Foe+ 0(d)

i N
Aé -
a-clFle+ 003
Vitelfie o (105)
= ———+0(< A
(L—QTFS"IQ (/\)
Because A — x as & — 0. and identifving a (72), we obtain the limit
Eix]b A =ayl+ cTF e ) (106)

That limg_g A™é is identically the right-hand side of (106) follows directly from the form of A* (90)
and the identity (72).

We next derive an explicit expression for the slope of B(f.48) (56) at é = 0. This expression
will be used to develop an o(é) approximation to B(8.6).

Theorem 3 The derivatives of the bound B(8.8) and of the normalized difference between the

)
unbiased CR bound and this bound. AB(8.¢) = w, exist and are given b
B(2.0) y

dB(8.4) _ [T dAB(4. ) .
T|5=o=—23(ﬂ.0) 1+9? . and —T|5=0=2,/1+n2 , (107)




where 1 ts the bias-sensitivity inder defined by
7 E NP =R (108)

Proof of Theorem 3. The existen-e of the derivatives will follow from the existence of limg_.q é—é%(-i’—&l,
which is derived in the following expressions.

For convenience we repeat (74):

B(8,6) = B(8,0) - M* ~axa - 518 (109)
where
a = (a-c F ') = B(6,0) (110)
8 = -aF7'c¢ |
and
ay = (1422 - XTI+ AF,] o) (111)
B8, = day|I+AF] ¢

=X

The use of the identities for a, ax, §, and 3,, (110) and (111), gives the following equation
for the difference B(8,0) — B(8,6):

B(6.0) - B(8,6) = M?+axa+flp (112)

A% + ana + AaxeT[I + AF,| 7 F ' ca

= [,\6 +a(l+ AT+ ,\F,]"F;lg)%\] 5

so that

B(6,0) — B(6,6)

- =X +a(l + XTI+ MF, ' Flg) (113)

6

Next we develop the following facts:

e From (93) of Lemma 1 and the forms of a) (111) and a (110),

ay 1 1
6 14 da—- XTI+ AF,) ¢ 6) (114)




1

(5)
1+ MNa—cTF ')+ 20(3) \6

1 1
T 1+ 2+00) (5)
_r
% 1+ 0(6)

e A completely analogous argument as used in proving (93) of Lemma 1 establishes
AT+ AR F e = TFc+ 0(%)
= JF?%+06) . (115)
Substitute relations (114) and (115) into the right-hand side of (113) to obtain

B(8,0) — B(8,96)

- (116)

_ T 2
= M+a(1+TF 9+0(6))"&To_(5_)

Recalling the result of Proposition 2,

26— ay/1+ TF 3¢ , as 6§—0 (117)

take the limit of (116) as § — 0 to obtain

_dB(Q,&)i i B(6,0) — B(8,6)
s 16=0 b—!.% )

1
= \/l+cTF_2c+a1+cTF—2c———-—
a =08 = ( = ¢) ay/ 1+cTF; %¢

a

= 20\/14+TF2c . (118)

Because a = B(8,0), the first identity of (107) is established. The additional observation that

I

& " & BEY & BE,0) (119)

establishes Theorem 3.
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Theorem 3 can be used to approximate the form of the bound B(8,6) up to o(é) accuracy; in
particular, B(6,6) ~ B(6,0) + 6134‘%& ls=0 for sufficiently small 6. We have the following:

Theorem 4 The lower bound B(8,6) (56) on the variance of 6, has the representation
B(8,6) = B*(8,6) + o(6) (120)

where

B*(6,6) = B(8,0) (1 N gTF;2g) . (121)

Define the vector din,, -

don = e [-LTET (122)

=min P
V1+cTF %
drvin i an o(8) approzimation lo the minimizing vector of B(8,8) tn the sense that

le1 + domin)T F7 ' ey + dimin) = B(8,6) +0(6) . (123)

Proof of Theorem 4. The relation (120) is just a consequence of the form of the derivative (107) of
B(8.6) at § =0, given in Theorem 3, and the Taylor expansion

B0 o+ of8) (124)

B(8,0) - 2B(8,0)6y/1 + cTFy 2c + oé)

To establish the second part of the theorem, (123) must be shown to hold. For notational
convenience, define

B(6,4) B(8,0) + ¢

i

O L R (125)
1+ cTF ¢




so that d%, = aeo{—1,cTF;1]T. The substitution of d ., into the left-hand side of (123) and

identification of the inverse Fisher matrix (70) gives
le) + dimin )T F7 o1 + drnin]

a QT

g T

= (1= ac)a+200(l — 0o )cTF B+ 0% cTF;'TF ¢

= (1 - G0, 000’ Fy '] { ] 1 = Qo000 F; 1T

Now recall the definitions (72) for a, § and I
a = (a-c"Fle)™! = B(6,0)
B = —aF,c
T = Fl4aF 'c«TF!
Substitution of (127) into (126) gives
ler + dimialT F 7t ey + drinl
= al - aw )’ — 200x(1 - Ao )cTF 2
+al TENFTY +aF e FUYF e
= af(1 = aw)? — 2000 (1 — aoo)eT Fy 2+ o (T Fy %))
+a2 cTF 3¢
= 0fl — 0 — 0T Fy 7 + 0k cTF e
= afl —ax(l+TF 2P + ok F e

Finally, recalling the definition (125) of oo,

le1 + drin]” F~ ' ex + drmin]

) Tp-3
= o[l - ——=———=—=(1+ cTF %)% + g2 £ _Qz
J1+ TF 2 1+ cTF e

B(6,0)[1 — 6y/1 + <TF; 2 + o6)
B*(8,6) + o(6)
B(8,8) + o(6)
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(127)

(128)

(129)




where in (129) we have used the facts a = B(6.0) (70), and B(#,6) = B*(8,6) + o(6) (120). This
finishes the proof.

The following corollary to Theorem 4 will be needed for the sequel.

Corollary 2 If for a given point 8° the Fisher matriz F(8) is invertible at § = 8° and its elements
are uniformly continuous over an open neighborhood U of 6°, then an open neighborhood V C U of
6° ezists such that in (120) to(8) converges to zero uniformly over § € V as § — 0.

Proof of Corollary 2. Denote by ||A|| the norm of the square matrix A ([3], Section 5.6) and define
E(8) = F(8) - F(8°). Because the elements of F(8) are unifcrmly continuous over a neighborhood
U of 8°, |E(8)|| converges uniformly to zero as § — 8°, and since F(#°) is invertible, an open
neighborhood W C U of 8 exists such that F(8) = F(8°)+ E(8) is invertible over § € W. Therefore,
using the inequality [[F~1(8) = F~1(8°)|| < |F~H@) - IE~1 (8 - |E()Y ([3], p- 341, Exercise 13)
F~1(8) converges to F~!(8°) uniformly over the ncighborhood ¥ of 8°. Hence, F(8) and F~1(8)

are both uniformly continuous over the neighborhood 1 of §°. Now recall the definition (57) of

the function g(A) = ga(A): ga(A) def el + AF(8)]%,. Since I + AF(8) is invertible and uniformly

continuous over the neighborhood U of §°, a similar argument establishes that g¢(A) is uniformly
continuous in 8 over a neighborhood 11’ of §°, where without loss of generality we can take W =w.
It can also be verified that for all > 0 the function B~(, &) (121) is uniformly continuous in 8
over the neighborhood W of §°. Define f(£.)) = ge(A) — 62 where {d-_gf [6,QT]T. From the uniform
continuity of gg(A} it follows that f(£, A} is uniformly continuous in £ € R* x W. Furthermore,
applying the identity (6) to f(£, M), the derivative VAS(E M) = -2§TF(_Q)[I+ AF(8)] 3¢, is nonzero
and continuous in A for A > 0. Define £ = [6,Q°T]T. By Theorem 1, for any é > 0 a unique point
A® exists such that f(£°,A°) = 0. We can now apply the implicit function theorem ([10], Chapter
4, Theorem 15.1) to assert that an open neighborhood V' C W exists such that the solution
A = T(8,8) to the equation ga(A) = 62 is uniformly continuous in @ over § € V. Therefore, in
view of the functional form (56), the bound B(8,¢) is uniformly continuous in 8 over 8 € V. The
remainder term ofé) in (120) is thus equal to the difference B(8,6) — B*(8,6) of two uniformly
continuous functions: therefore %0(5) converges to zero uniformly over # € V. This establishes the
corollary.
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7. DISCUSSION

In this section issues related to the bound of Theorems 1 and 2 will be briefly discussed.
Some general issues are of importance: Is the bound of Theorem 1 achievable with any practical
estimator? What does the bound (56) imply about the inherent performance limitations of unbiased
estimators in the presence of nuisance parameters?

7.1 Achievability of New Bound

If for all § in a region D C © an unbiased estimator achieves the (unbiased) CR bound,
B(#8,0), on MSE (recall that MSE equals variance for unbiased estimators), then the estimator is
called efficient over the region. An estimator that by virtue of its bias has MSE which is less than or
equal to B(6,0) for all 8 in a regica D C O, and strictly less than B(8,0) for at least one 8 € D, is
called superefficient over D. Assume that D is a finite rectangular region D = D; x--- x D,,, where
Dy is an open interval, k = 1,...,n, and also assume that F(@) satisfies the uniform continuity
properties over U/ = D assumed in the Corollary to Theorem 4. While achievement of the bound
B(8,6) is not necessary for superefficiency, if for a sufficiently small value of & (to be specified
below) the variance of an essentially unbiased estimator 6; achieves B(8,6) for all @ in an open
region D, then an open region V C D exists such that §; is a superefficient estimator over 8 € V.
To be specific, because the bias gradient of él satisfies the condition (10), for all 8,8° € D

b1(8) — b1(€°)]
= [;1(8) — br(67,02,...,60) + b1 (67,02, .. ,65) ~ by (67,65, .. ,6n)
+01(67,03,- .. ,0n) — - — by (67,...,60_1,60) + b1 (67,...,65_1,6n) — bu(6°)]
< b1(8) — 01 (67,82, .. ,0n)| + [b1(69,62,...,6n) — 0r(67,63,...,6,)
+-oe 4 [b1(6F,. .., 07_1,0n) ~ &1 (6°)]

& Bbl(ul 02 0,,) 62 6b1(9° Uus 03 ...,0 )
- L] L] L] du + / 1 ] + 1vn d
1/0? B, 1l +] . 9y us |

6n By (63,...,62_,,un)
+-- 4+ o2 —od
'/;: Ba. U |

IA

n
63 16; - 67|
=1

IA

6 max |f; ~ 67|
i=1

= M (130)
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where M is a positive constant independent of specific values 6,0° € D:
M‘megxwi - 67| . (131)
=1

As D is finite, maxp, {6; — 6| < oo and M is finite. Assume without loss of generality that a point
8° € D exists such that b;(6°) = 0 (if no such point exists, pick an arbitrary 8° € D and redefine
61 to be 6 — by (8°)). Assume varg(f;) = B(8,6) for all § € D. While it follows from Theorem 2
that for any é§ > 0, B(8,6) < B(8,0), V8, we need to show that MSEQ(él) < B(8,0), where strict
inequality holds for at least one point §. The form (120) of B(#,6) in Theorem 4 gives for all § € D

MSEy(61) = B(6,6) +#(6) (132)

B(0,0) (1- 28y/1+ TR 2c) + o) + (@)

Therefore, subtracting B(6,0) from both sides of (132) and using the bound (130),
~612B(8,01/1 + T2~ zo(6)] + B (0) (133)
_5[2B(8,0)\/1 + ¢TF%c - %0(6)] + M2§2
~612B(8,0y/1 + T e ~ 2o(6) ~ M4

Now, assuming uniform continuity and invertibility of F(8) over § € D, by Corollary 2 a region
V C D exists such that the quantity %0(6) converges to zero uniformly over § € V. Hence, since

2B(8,0)y/1 + cTF;%¢ > 0, a sufficiently small positive é exists which is independent of 8, such that

MSE,(6,) — B(8,0)

A

MSEy(61) < B(8,0), eV . (134)

Therefore, 6; is a superefficient estimator over V.

The condition that the variance of él achieves the variance bound B(8,8) everywhere in D is
unnecessarily restrictive. There are two necessary conditions for the achievability of B(6,6). First,
a real bias function b; (#) must exist that has the minimizing vector d,,;,,(8) as its gradient over D.
If d,;n is the gradient of b, the gradient Vgd,,, is equal to the Hessian matrix of b (@), which
is always symmetric; therefore, the first necessary condition requires that Vgd,,;, be a symmetric
matrix. Second, since B(8,6) is a CR-type bound, the sufficient condition for equality in the Schwarz
inequality underlying the derivation of the CR bound must be satisfied. This latter condition can
only be satisfied in the case of parameter estimation for exponential families of distributions ({11},




Theorem 1, [6], Chapter 1, Section 7). As these two necessary conditions cannot always be satisfied,
the variance bound B(§,6) is generally not achievable over any region D.

If for some point #° an efficient estimator exists for the vector § over an open neighborhood
of §°, then an essentially unbiased locally supereflicient estimator can be constructed. 6, is called
an essentially unbiased locally superefficient estimator at the point §° if 6, is essentially unbiased
and if MSEQo(él) < B(8°,0) while MSEQ(él) < B(6,0) for 8 over an open neighborhood of 8°.
Local superefficiency is a weaker property than global superefficiency because a locally superefficient
estimator only requires superefficient performance in the neighborhood of a particular point 8° and
it may have MSE which exceeds B(#,0) outside this neighborhood.

Let 8° be some fixed point in © and let a § > 0 be specified. As in Corollary 2, assume
that F(8°) is invertible and that F(8) is uniformly continuous over an open neighborhood U of ¢°.
This assumption implies that an open neighborhood V C U of 8° exists such that F~1(6) exists
and is uniformly continuous over V. Now assume that Qeﬂ is an efficient estimator for @ over the
neighborhood V/, ie., Qeﬂ is unbiased over V and

Eg{(éeff _

eff

08" -0 =F1@), 8V . (135)

The cdaim is that the following estimator is essentially unbiased, locally superefficient in an open
neighborhood of 6°:

f

6 26+ le) + dpin @) 67 - 0°) (136)

where d,,;,(€) is the vector given in Theorem 1. Because Ey [Qeff] = @, we have for the bias of 6,

bi(8) = Eglby — 6] (137)
= Egl6} + ey + dmin(6°)7@ - 8°) - 01)
= ler + dmin(@°)7(8 - 6°) — (61 - 6)
= [e1 + dmin(@°)7(8 - 6°) — €] (6 - 6°)
= dT.(0°)8-6), WeV

Hence, the bias gradient Vb, (6°) is‘ simply qu.n (@°), which by Theorem 1 satisfies the constraint
dzﬁndmmh < 6% and the estimator 6, (136) is essentially unbiased over § € V. Furthermore, the
MSE of 6, is equal to

MSEg(6)) = Egl(6: — 6,




= Egl(6 + le1 + drin @NT @7 — %) - 61)?)

= Byl(le + dmin @) @7 - 0°) - €718 - 8°))?]

= Egl(ler + drnin @)@ - 0) + &1 + drin @) 18 - €°] ~ €716 ~ 6°)?]

= Epl(le; + dpin (@)@ - 8) + dZ,,(6°)(6 - 0°)°)

= les + dopin (0T F 1 (O)le1 + Gumin (0°)] + (% (8°)[6 — €°))°

= les + din@NTF 1 O)les + drmin %)) + B(B), VEEV . (138)

Define the function e{f)

e8) & MSEy(6,) - B(8,0) (139)

= ley + dmin @)NTF1(@)le; + dmin (8°)] — el F~1(0)e; + b‘f)(ﬂ)

Note that when 8 = §°, MSEQo(él) = B(8°6) so that e(8°) < 0 for all positive 6. Furthermore,
e(8) is uniformly continuous over 8 € V because F~}(8) is uniformly continuous over § € V and
b1(8) (137) is linear. Hence, for any v > 0 and any § € V an € = ¢(y) independent of § exists such
that

le(6) - e(8°)] <~ (140)

whenever ||§ — 8°|| < ¢(7). Relation (140) implies
e(8) < e(8°) +7

As e(8°) < 0 ay =7 exists sufficiently small so that e(8) < 0 for all 6 in the neighborhood O =
8 — 8°|| < e(v'). Consequently, MSEg(8,) < B(8,0) for all § € O and 6 is locally superefficient.

7.2 Properties of the New Bound

The behavior of the new bound will be treated by listing some of its properties. For conve-
nience we repeat equation (107) for the slope of the difference AB(8,6):

@d%ﬂliho =2/1+TF 3% (141)

where



B(Q»O) - B(Qvé)
B(6,0)

AB(8,6) = (142)

Properties:

1. The slope (141) is positive (because F, % is positive-definite), as expected because
B(8,6) is less than the unbiased CR bound B(8,0). More significant is the fact that
to o(6) approximation the relation between B(6,6) and B(8,0) is multiplicative as
a function of 6: B(8,6) = B(8,0)(1 — 264/1 + ¢TF;2¢) (recall Theorem 4). This
provides indirect evidence for a potential for severe bias sensitivity of the CR bound.

2. The slope (141) of AB(8,6) is characterized by the length of the vector F, !¢, a
quantity which has been identified in Theorem 3 as the sensitivity index 1,

¥ e = VTR e . (143)

7 is a dimensionless quantity which measures the inherent sensitivity of the unbiased
CR bound to bias in the sense that —2./1+ 7° is the per § decrease of B(8,6)
relative to the unbiased CR bound B(8,0). A useful form for 7 is given in terms of
the elements of the inverse Fisher matrix F~! (70) and (72)

_ I8l
n= =1

«a

(144)

3. The quantity 7 {143) can be interpreted in terms of the “joint estimability” of the
set of parameters § = (61,...,0,)7 by recalling the CR matrix inequality (23) for

the covariance of an unbiased vector estimator § = (0-1,... 0 T,
0;1') 12 ... O1n
A . . . def —1
covg(f) > : : : = F . (145)
Onl On2 -.. aﬁ
This gives a correspondence between 7 and the covariance between a set of optimal
unbiased estimators, ie., an efficient estimator 6 1 oi=1,...n,
T T T S 3
= 8 a 0% b " o_%
02 On
- ”[p1201"--1p1'nal ]”

o g2\
= (gp%,;?) , (146)

where p;; is the correlation coefficient between 6 fI and 0;’ !




def T 147

Pi; = s . (147)

In light of (146), the set of important but difficult-to-estimate parameters is of par-

ticular significance; these are information-coupled with 8; (p;; # 0) but their best

unbiased estimators have large variance ('L-ar(éju) = a;" > 0). 5 (143) is a measure
of the propensity of these parameters to influence the estimator of 6;.

. Note that the slope (141) of AB(f.46) is minimized for the case n? = gTF,‘zg =0, as

8, 2
([Mfiis-'é—)ioao:?\/l+£TFs"£ 2 2 . (148)

Therefore, B(8.48) is the most stable with respect to bias when there is no information
coupling between 6, and the other parameters so that ¢ = 0 and = 0. Furthermore,
if % = QTF;ZQ = 0. F;'c must be the zero vector and, from (85), the minimizing
bias gradient has the form

dpin = [=6,0.....0]7 | (149)
From the form of the gradient (149) the “best™ biased estimator has mean

Eq(6)) = (1 = 8)8; + const . (150)

This mean can be obtained by a simple “shrinkage”™ of an efficient estimator 0;“, if
such exists;

b =(1-6)67 -0+ 00 . (151)

and as discussed in Section 7.1. 8, is locally superefficient in a neighborhood of 6°.

5. Let the Fisher information be such that the ith element of ¢f F;! dominates the

other elements: ¢/ F7' = (0.....0.¢.0.....0]. where as in (146) Cdg pioifoy. This
can occur if 4, is a coupled but extremely hard-to-estimate parameter. Then, the
sensitivity index is given by

= Flex ¢t (152)

S

and, under the additional assumption ¢ >> 1, the minimizing bias gradient (122)
takes the approximate form

=[0,....0.8.0,....07 . (153)
ie.,
by(8) = 88, + const . (154)

In this case, a small bias due to information coupling between #; and 6, can give a
substantial decrease in the general CR bound.
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7.3 Practical Implemeutation of the Bound

From (146), the sensitivity index 7 is apparently dependent on the units used to represent
the parameters 6;,...,8,. For example, if 6, is represented in urads and 8, is represented in MW,
the quantity o2/0; in (146) will be much smaller than if 6, is expressed in rads and 6; is expressed
in uW. Thus, a parameter may be rendered difficult to estimate solely by virtue of the choice of
units used to represent the parameter. The choice of units is equivalent to the specification of a
coordinate system to represent the parameters (see Section 3). This unit dependency is due to the
fact that when taken alone the constraint on the bias gradient is not tied to a particular choice
of coordinates for © and therefore does not adequately describe a user constraint on the bias.
In order to use the results of this report, the coordinates for © must be specified, e.g., through
the specification of a constraint ellipsoid (11) in © over which the bias b (8} is allowed to vary
by at most 4. This bias constraint {11) will naturally reflect the user’s choice of units for the
parameters. In Section 3 we transformed the user’s units to make the constraint ellipsoid a sphere
(12). The results derived in Sections 5 and 6 are valid in these transformed coordinates. The
reason that we chose to work with spherical constraint regions is that for a nonspherical region
we ocould not have simultaneously achieved properties 1. and 2. of Proposition 1 for our form of
bias-gradient constraint (10). Thus, expression of the bias gradient in a transformation-induced
spherical-constraint region guarantees maximal bound reduction, i.e., the greatest freedom on the
value of Vm (@) subject to the requirement {11), as compared with any other choice of coordinates.
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8. APPLICATIONS

In this sectior we apply the previous results to estimation of standard deviation and esti-
mation of the correlation coeflicient. based on measurements of a correlated pair of 11D zero-mean
Gaussian random sequences. Analytical expressions are given for the unbiased CR bound B(8,0)
the sensitivity index n, and the approximation d;;,, in Theorem 4 for both of these estimation
problems. Then, for the estimation of standard deviation, the exact bound B(#,6) (56) of Theorem
1 is numerically evaluated and its behavior is compared to the behavior of the sensitivity index.

Consider the following covariance estimation problem. Available for observation are a pair of
randori seyiices

(X0, = Xipeo Xim
{.\.2, :71=1 = _\’21 ..... \ .'.Zm - (155)

where {[4\'1,._\'2,]7} are 11D Gaussian random vectors with mean zero and unknown covariance
matrix A;

>
def | 01 012
Ak T . (156)
019 (7.3

Define the correlation coeflicient

’s Ty -
pleh 12 (157)
0,0,

where g, and 0, are the positive square roots of @ aud a3, respectively.

8.1 Estimation of Standard Deviation

The objective here is to estimate the standard deviation ¢, of X', under the assumption that
o3 and p are unknown. The likeliliood function corresponding to this estimation problem has the
form {A.2) from Appendix A

m N ‘ m Xz X142 Xz
l(oy.07.p) = ——=In((2r)0ai]l = p*]) = ———— | L -2 =2 .
(01.02.p) 5 lnt(2m) aiaz[l = p%]) A=)\ 2 P oos + p

(158)
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where in (158) )i—lz is the sample variance of {X,;}; and X; X> is the sample covariance between
{Xi1} and {Xi2} for kmown mean zero. The Fisher information matrix for ¢, o2, and p is derived
in Appendix A, Equation (A.11)

2= _ 272 _»p

m 1 o102 o1

= — .__i 2-p? L
F 1 - p2 o102 ;52 o2
£ _e M

41 o2 1-p

(159)

In the notation of (7), identify the parameter vector §: 6; def oy, 6> def o9, and B3 def p- The
unbiased CR bound B(8,0) (30), the sensitivity index n (143), and the o(é) approximation d;,
(122) are derived in Appendix A, Equations (A.24), (A.25), and (A.26), respectively,

_ g
B(Q,O)—% )

o2 1-
N = (0—:;,/9) o+ (———pz(oil,p?))(l—pz) ,
w6 T o, po T
Y,nin = 1_1_1’2[ 11 Ulp’ 01(1 p)]

The following comments are of interest:

L

The CR bound B(§,0) (160) on the variance of an unbiased estimator ¢, is function-

ally independent of the variance o2 of Xy; and of the correlation p between X;; and

X’g,‘,

If p = 0, then n = 0, and the general CR bound is minimally sensitive to bias-gradient

length 6.

The squared sensitivity 77 (161) is the convex combination of two terms: g&zpz and
1

”—z—gjﬂ. Since 77 is inversely proportional to 0%, the sensitivity of the CR bound to
1
small bias can be significant when o7 is small.

. For p? close to 0, the ratio of the first and second terms of (161) is approximately

o?p?. In this case, if 62 > ;1; the first term dominates 72, while if 02 « > the
second term dominates. For p? close to 1, the ratio of the first to second term is
approximately o2 /(1 — ¢)2. In this case, if 03 > (1 — p?)? the first term dominates,

(160)

(161)

(162)



A related problem is the estimation of the correlation coeflicient p for the above pair of

while if 02 < (1 —p?)? the second term dominates. In any case, it is seen that o2 > 1
brings about a much higher sensitivity index than o3 < 1, particularly for p? > 0.

Gaussian measurements.

8.2

Estimation of Correlation Coefficient

Consider the estimation of 8 = p, when 6

def def def

we have, from Appendix A, Equations (A.39), (A.40), and (A.41), respectively:

8.3

B8.0)= L1 - 2P |

—

01-p2p¢

- é p p T
drmin = Wirei ST ‘2(‘1——#’)“2]

We make the following comments concerning the problem of estimation of p:

1.

The CR bound B(#,0) (163) on the variance of an unbiased estimator j has a form
which is independent of the standard deviations o; and 05. Hence, the MSE perfor-
mance of an unbiased efficient estimator of p is also invariant to these quantities.

As occurs in estimation of o, the case p = 0 corresponds to a CR bound which is
minimally sensitive to small biases.

The form of the sensitivity index 7 (164) indicates that the CR bound is sensitive to
small biases if the average (02 + 02)/2 is large and if there is significant correlation
lpl > 0. This, along with the form of d};,, (165), suggests that substantial improve-
ment in estimator variance may be possible by using an estimator whose bias is not
invariant to the standard deviations o; and o;.

Numerical Evaluations

Surfaces for the normalized difference AB(#,6) (55) and the sensitivity index 7 were generated
numerically for the variance estimation problem of Section 8.1. The matrix F' (159) was input to a
computer program which computes AB(f,6) and 7 as the parameter vector § = (0,,02,p) ranges
over the set {1} x [0,1000] x [—1,1]. For this example, § was set to 0.001 and m = 1. In Figure 5
the quantity AB(6,6) is plotted over (03,p) and in Figure 6 the sensitivity index is plotted over
the same range of (02,p). A comparison between Figures 5 and 6 supports the approximate small

51

o1 and 03 = o, are unknown. For this case
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Figure 5. The normalized difference AB(8,6) plotted as a function of oy and p for RMS
power estimation. Increasing values of AB(8,6) correspond to increased sensitivity of the
CR bound to small bias. Surface is plotted for § = 0.001 and oy = 1.0.

6 analysis in Section 8.1, which was based on an investigation of the sensitivity index. Note that
the region of p for which the bound B(#,6) differs significantly from the unbiased bound becomes
increasingly large as the standard deviation o2 of X3; increases. Further, when p = 0 then 7 =0 in
(161), and we see minimal bias sensitivity. In the limit as 0o — oo the surface AB(8,6) (Figure 5)
becomes a deep wedge centered along the line p = 0; substantial bound reduction is achieved for
all nonzero p. Figure 5 indicates that for small o, the surface AB(8,6) is close to zero for all p.
A simple calculation shows that p?(1 — p?)? attains its maximum for g = 1/3. Hence, in view
of the expression (161), 77 < 02 /o? + 4/(270%). Thus, for the present example where o7 = 1.0,
7 < 02 +4/27. Recalling that AB(,6) ~ 6 (“B 84 ) = 26\/1+ 17 (107), this implies that little
bound reduction occurs for small o2 and é = 0.001.

52




1520776

1000.0 1 ‘

N A T

400.0 -

200.0 -

0.0 - e o7
800.0 NS 2

600.0

400.0
o, = -1.0
200.0 -0.6
. = 02 00 %%ps 08

0.0

Figure 6. The bias-sensitivity indez 1 plotted over the same range of the parameters as
in Figure 5.




9. CONCLUSION

A npew lower bound on estimator variance for almost unbiased estimators in the presence
of nuisance parameters has been derived as a function of the Fisher information matrix and the
unbiased CR bound. The new bound has the form (56) which involves finding the positive root A of
a convex function (57). The bound (56) is valid over all estimators whose bias gradient has length
less than or equal to a prespecified constant 8. It reduces to the standard CR bound on unbiased
estimators for § = 0. The sensitivity of the general CR bound to small bias has been characterized
by the slope of the normalized difference between the new bound and the CR bound. This slope is
monotone in a sensitivity index 7 (108). The form of the sensitivity index indicates that the new
bound is significantly less than the unbiased CR bound when important but difficult-to-estimate
nuisance parameters exist. This implies that the application of the CR bound is unreliable for this
situation due to severe bias sensitivity.

We obtained numerical and analytical results for the problem of estimation of the standard
deviations and the correlation coefficient for a pair of IID zero-mean Gaussian sequences. For
estimation of the standard deviation of the first sequence it was shown that a small estimator
bias can significantly affect the CR bound when the variance of the second sequence dominates
the variance of the first and the correlation coefficient of the two sequences has high magnitude.
For correlation estimation, it was shown that a small estimator bias can significantly affect the
CR bound when the average of the two variances is high and the correlation coefficient has large
magnitude.




APPENDIX

Here the Fisher matrix F for the estimation problem of Section 8 is derived and the quantities
B(6,0), n and d;,,;,, of Theorem 3 and Theorem 4 are calculated.

A.1 Fisher Information Matrix for Estimation of 2 x 2 Covariance Matrix

Since X; = [Xi1, X;2]7 are IID bivariate Gaussian random vectors with mean 0 and covariance

A
o2
Ad | ST 12 , (A.1)
o1 03
the log-likelihood function for oy, 07 and p & 012 /(o102), given the observations X;,...,X,,, is
l{oy,02,p) = Inf(X;y,...,Xn;01,02,p) (A.2)
X3 2 X3
= - ln((27r) 26202(1 — p%)) ~ Z( il X,lk,g + 3 )
2
m m X2 20 — X2
= Ten)ad(l - )~ (XL % g X2
2 (( 7!') 1 2( P )) 2(1 _pz) Gf 7102 1X2+ 0_22 )

where fli, Yg and X; X, are the sample variances and the sample covariance associated with {Xj;}
and {X;2}, respectively.

Next, the elements F;; of the Fisher matrix F (22) are computed:

_ & liad __ &

doy _m B80,0p
- )Y — &l 8"'! bial
=((Fi) =E| ~528; —522 —355 : (A.3)
__&L & _&
8pBo, 8pda; Tl
Using (A.2), the partial derivatives in F are simply computed. The results are
oL om0 1 (3K} XX,
802 o} 1-p2 | o? p0102
_ 621 = —-m p X1X2
60’1602 B 1 —p2 0’202
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(A4)

(A.5)




L m 2 [N Xi|, %%
doidp  a(1-pP)\1-p | o102 0| o102
FLo_ mf 1 3X3 0 X1 Xz |
dos2  o? 1-p | o3 P 0102 |
< m 2 [ XiX; X3] L X%
O8090p o2(1 —p2) \1-p2 p o0y 0% | oo
I -m o 14322 [X2 XX X2 X1 Xz
-— = ——_|q R Ay el S| 22044 :
op? (1-p?)? (( tF) 1-p% |0} P o102 +0‘§ P o102

where the remaining terms are omitted due to symmetry of F. As the sample averages in (A.4)-
(A.9) are unbiased,

2
3
a3
X1X,
0102

E[

=1

E|

l=p (A.10)

the elements of F are easily computed by taking the expectation over the quantities in (A.4)-(A.9).
The results are

Py o= E[‘ailﬂ:l:np?:z;fp?
R = Bl )
Fi3 = E[—affép]zlflp?(;f)
B = F2

Fp = E[—ailz]zlinp?t%pz
by 3l . m (-p)

E[—aagap] T 1-p2 oy




Fpi = P
F3 = Fp

1+
1-p?

By = E{-g-;]z% (A.11)

A.2 Bound Derivations for Estimation of 2 x 2 Covariance Matrix

Next, the sensitivity index n and the approximation to the minimizing bias-gradient vector
drin are derived for estimation of the standard deviation, §; = o1, and for correlation estimation,
6, = p, respectively.

Estimation of Standard Deviation

In the case where o, is of interest, identify the partition

F =
¢ F,

a T
, (A.12)
ie., a=F, c=[F2 Fs3)7, and

F: FE
F=| 23 , (A.13)
F3; F33

Specifically, in terms of (A.11),

m 2-
m

R

_pi_ pir
1~p2'0102 o)

2 -
F,=—’£—[T”L 322} . (A.16)

10
|

(A.15)

2

-2 | = £
— =P 1+
az 1-

Only the inverse F, ! is needed to compute expressions for 7 (143) and djn, (122):

7= Fle=|Fd? (A.17)
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4 T p-11T
d:r:in = —=———=["1,c Fa . (AIS)
i = |

Using Cramer’s rule, the inverse of F; is, from (A.16),

1+p? A
F = ; 2 [ T—f 7 } , (A.19)
I 3] __p'Z o2 '—a,f_"
where |F;| is the determinant of F,;
m 22 1
F,| = < . A20
Fi= (1) =17 (A.20)

Now, in view of (A.15) and (A.19), the vector ¢’ F; ! is

TF = __’_”_[i _P_] 1 _m [iﬁ"' ?%}

1- g2 |o1on’ oy | |Fa|1 - £ =g
- ( m )2 Fl+) | FA P p2-p)

[Fol \1 - p2 o102(1 — p2) o109’ ‘710'% 0103
o _ L m \ 1 o2
- _IF.I(I—pz) 0103 [21_,,2*2”] : (A.21)

Use the expression (A.20) for |F,| in (A.21) to obtain
T -1 1 2 2
TF == |of?, p1- Y] (A.22)
7

Now the quantity ¢ F; !¢ is simply

=
s [o2# o1 =) [ } -7

m Ia
(1 —p’)al (agpzmo +p(l - )
( +0(1—p ))

TF e

(l-p’)




m

1-p

(A.23)

Using (A.23), the unbiased CR bound B(8,0) is next derived. From (30), the definition

(A.12), and the iden‘ity (2),

1
a-cTF ¢

1
- %_ﬁ’%

B(8,0) = elFle =

g

|

B
3

The sensitivity index 77 (A.17) is given by the squared magnitude of (A.22)
7 = TF = |lc"F P
1 2 211112
=1 TR Ol

_ (gp'z) A+ (F"z(la%l?))(l —#)

Finally, using (A.22) in (A.18), we have the following expression for d;;;.:

4 a2 P 2 ]T
d"' = -1, —== , —— 1 _

Estimation of Correlation

In the case where p is of interest, identify the partition

F=|
|

ie., @ = Fy3, ¢® = [Fi3,Fz3|7, and
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(A.24)

(A.25)

(A.26)

(A.27)




Fy F
pp=| 0 2 . (A.28)
By Fyp

Specifically, in terms of the identities (A.11)

m 14+
ap = —1—“_—p—21.‘[)2 (A-29)
- ™M _ZP ZPr A.30
¢ = omlt (A.30)
2=p* =% |
FF = 1_?; o ne . (A.31)
0102 3

Only the inverse [F?]~! is needed to compute expressions (143) for 5, (122) for di;,,, and (30) for
B(6,0) (Note: we use a reversal of the previous parameter ordering);

7 =PI [F e (A.32)

_ é
RV T

-
i

L[ (R (A.33)

Using Cramer's rule, the inverse of [F?] is, from (A.31),

2_2
I I

F ' = — : : (A.34)
s Fg l - 2-
FI -7 | BF
where |F?! is the determinant of F?;
Fl= (125) -4 (4.35)
A=\r=p) 73" -" '
As a final form, combining (A.34) and (A.35) we obtain
o3 (2 -
(F’p]—l - _1__ i( p2) FFo102 (A.36)
4m o102 03(2 ~ p?)
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Now, in view of (A.30) and (A.36), the vector [c?]T(F?]™! has the form

o1’ o2 4m

AT = m —p P 0'?(2—172) P20102 } 1
L][s} l—p'z[ ][ P2C710'2 0%(2_p2)

= 4(—1—_1_—;)2—5 {—-01/)(2 —92) —p30'lv ~09p(2 __p2) _p302]

—p
:?‘(T_—pz'—)[ﬂl,UQ] . (A37)

Now the quantity [c?)7 [F?]™!cf is simply

et P 5|
e TR = 2(1—p2)[”""2]{,—:f]1"’2
m2
T o

Using (A.38), the unbiased CR bound B(f,0) is next derived. From (30), the definition
(A.27), and an identity analogous to (2);

1
_ Tp-1, _
B(8,0) = e3F 'e3 T - T [EP e
1
m 1+
1——?1_—%; - (1—5)2

a-r . (A.39)
m

The sensitivity index 77 (A.32) is given by the squared magnitude of (A.37)

[

7 = eAITIF) P

7
4(—1:;2)—”[01,02]||2
ot +a2 P
12 22(1_p2)2 ) (A.40)




Finally, using (A.37) in (A.33), we have the following expression for d};,,:

g o= 0 (g P P ! (A.41)
don = T N WA T 2
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